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Math on a Clock

Modular arithmetic is arithmetic with an upper bound

Example, modulo 5:

1+2 ≡ 3 (mod 5), 2+3 ≡ 0 (mod 5), 3+4 ≡ 2 (mod 5)

Basically: a set ({0, 1, 2, 3, 4}), and an operation (+)
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Rubik’s Cube

There are a set of operations you can
perform on a Rubik’s cube

Performing two in sequence is
equivalent to another operation

Basically: a set ({FRL, . . .}), and an
operation (◦)

Figure: A Rubik’s cube has
43,252,003,274,489,856,000
possible moves.
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Definition of a Group

A group G consists of:

A set UG
An associative operation ◦, closed in UG, with an identity and an
inverse for each element of UG

An Abelian group is one for which the operation ◦ is commutative

More examples:

Permutations of students
Symmetries of a pentagon
Rotations of a sphere
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Groups as Symmetries

Recipe for a group:

Take any object
Find the set of all transformations which leave that object invariant
This set, under composition, forms the symmetry group of the object

All groups can be constructed in this way

Group theory is a powerful method for studying symmetries in a
general way
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Group Actions

Even if a group comes from symmetries, the group itself is not tied to
an object

A group action specifies how elements of a group act on some object

Example: group of 3D rotations has an action on 3D space

If part of the object is left alone by an element of the group, we say it
is a fixed point of that element
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Subgroups

Groups can have smaller groups, called subgroups living inside them

When a symmetry is partially broken, the leftover symmetry group is
a subgroup of the original

Example: permutations
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Conjugacy Classes

A group element g is said to be conjugate to h if g = xhx−1 for some
x ∈ G
Elements of a group split into conjugacy classes of conjugate elements

Example: rotations of a sphere are conjugate if they are by the same
angle

Rz(45
◦) = Ry(−90◦)Rx(45

◦)Ry(90
◦)
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Normal Subgroups

A subgroup is normal if it consists of full conjugacy classes

Was the subgroup of permutations in the previous example normal?

How about the subgroup of rotations about the z axis only?

Neither are normal. Do these groups have normal subgroups?

The permutations S5 have the subgroup A5

The rotations SO(3) have no nontrivial normal subgroup, so it is
called simple
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Finite Simple Group of Order Two

https://www.youtube.com/v/UTby_e4-Rhg?rel=0
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Fields

Groups are powerful, but can’t capture everything

Ordinary math involves two operations, multiplication and addition

This can be captured by fields. A field is:

An Abelian group for the addition operation
A mutliplication operation, invertible for everything except 0, and
distributive over addition

Examples: Q, R, C
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Other Fields

Consider the set of all numbers of the form a+ b
√
2, where a and b

are rational

Are the operations closed?

(a+ b
√
2) + (c+ d

√
2) = (a+ c) + (b+ d)

√
2,

(a+ b
√
2)(c+ d

√
2) = (ac+ 2bd) + (ad+ bc)

√
2

Is multiplication invertible?

1

a+ b
√
2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2

All other properties inherit from the ambient field R. So yes, this is a
field.

This is a field extension over the rationals, denoted Q(
√
2)
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Degree of Extension

For any (finite) field extension, we can define a degree

Intuitively, a field extension is composed of elements like
a1 + a2α+ . . .+ anζ, and n is the degree

Degree of Q(
√
2) over Q is 2, since elements are a1 + a2

√
2

Degree is written as [Q(
√
2) : Q] = 2
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Construction by Compass and Straightedge

You may have heard that it is
impossible to trisect an angle via
compass and straightedge

To prove this, you can show that a
compass and straightedge only permits
degree 2 field extensions

Trisection of angles requires a degree 3
field extension Figure: Impossiblity theorems

are sad.
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Splitting Fields

Recipe for a field extension: take a polynomial, and adjoin all its roots
to the base field

Example: x2 − 2 over Q. Adjoin ±
√
2 to Q to form Q(

√
2)

In the splitting field, a polynomial splits: x2 − 2 = (x+
√
2)(x−

√
2)

The degree [Q(α) : Q] equals the degree of the minimum polynomial
of α over Q
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Towers of Extensions

What is the degree of the splitting field of x4 − 2 = 0?

The degree of Q( 4
√
2) is 4...but that’s not the splitting field.

The roots are {± 4
√
2,±i 4

√
2}, so we need Q( 4

√
2, i)

Q

Q( 4
√
2)

Q( 4
√
2, i)

4

2

Total degree:
[Q( 4
√
2, i) : Q] = [Q( 4

√
2, i) : Q( 4

√
2)][Q( 4

√
2) : Q] = 4 · 2 = 8
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Field Automorphisms

Consider the field extension Q(
√
2) and the map

f(a+ b
√
2) = a− b

√
2

This respects multiplication and addition:

f(x) + f(y) = f(x+ y)

f(x) · f(y) = f(x · y)

It also leaves elements of the base field Q alone

We call such a map a Q-automorphism
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Field Automorphisms

Remember the recipe for groups? Take an object, look at
transformations leaving its structure invariant.

Field automorphisms are exactly this kind of construction

The F -automorphisms of an extension E over a field F are called the
Galois group of E over F

Ross Dempsey (Johns Hopkins University) Galois and Solvability JHU Splash, 2018 19 / 27



Enter Galois

Évariste Galois (1811–1832) was one of
the most badass mathematicians ever

Tried to gain admission to École
Polytechnique, but was rejected since
the examiner couldn’t understand his
logical leaps

Staunch revolutionary; after being
expelled from École Normale for
criticizing its director, he joined the
National Guard

Arrested for threatening the life of King
Louis Philippe; later served six months
in prison, where he continued his
mathematical work

Figure: Évariste Galois at age 15.
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Polytechnique, but was rejected since
the examiner couldn’t understand his
logical leaps

Staunch revolutionary; after being
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Galois’ Final Days

In 1832, Galois was somehow talked
into a duel

He was shot in the abdomen, and died
the next morning

But, beforehand, he had collected all
his mathematical thoughts in a letter

“This letter, if judged by the novelty
and profundity of ideas it contains, is
perhaps the most substantial piece of
writing in the whole literature of
mankind.”

Figure: Évariste Galois at age 15.
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The Galois Correspondence

We have seen the Galois group, Gal(E/F ): the group of
F -automorphisms of E

Galois showed that the subgroups of Gal(E/F ) correspond to field
extensions living between E and F

This is the fundamental theorem of Galois theory
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Example: x4 − 5x2 + 6

We have already seen that the splitting field of x4 − 2 is Q( 4
√
2, i)

What are the Q-automorphisms?

4
√
2

i 4
√
2

- 4
√
2

−i 4
√
2

The automorphisms are the symmetries of the square, generated by
rotations 4

√
2→ i 4

√
2 and reflections i→ −i
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Example: x4 − 2

This group is called D4 (in general, Dn are the 2n symmetries of an
n-gon)

Let’s call the rotation r and the reflection s. What are the subgroups?

{e}

{e, rs} {e, r3s} {e, r2} {e, s} {e, r2s}

{e, rs, r2, r3s} {e, r, r2, r3} {e, s, r2, r2s}

D4
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Example: x4 − 2

Consider one of these subgroups, {e, rs}. Which field elements does
it leave invariant?

Any element of the form a+ b(1− i) 4
√
2 is invariant

Galois associates the field extension Q((1− i) 4
√
2) with this subgroup

What happens if we make this association for each subgroup?
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Example: x4 − 2

Every field extension between Q and Q( 4
√
2, i) appears

Inclusion is reversed

Q( 4
√
2, i)

Q((1− i) 4
√
2) Q((1 + i) 4

√
2) Q(

√
2, i) Q( 4

√
2) Q(i 4

√
2)

Q(i
√
2) Q(i) Q(

√
2)

Q
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Solution by Radicals

To solve a polynomial equation corresponds to descending the lattice
on the previous slide to build the splitting field

Galois’s theorem relates this to a sequence of groups with a particular
property

Such a sequence does not exist for all groups

Galois shows that the Galois group for the general quintic polynomial
does not have such a sequence

This proves the Abel-Ruffini theorem: there exists no general method
of solution by radicals for quintic and higher polynomials

Ross Dempsey (Johns Hopkins University) Galois and Solvability JHU Splash, 2018 27 / 27



Solution by Radicals

To solve a polynomial equation corresponds to descending the lattice
on the previous slide to build the splitting field

Galois’s theorem relates this to a sequence of groups with a particular
property

Such a sequence does not exist for all groups

Galois shows that the Galois group for the general quintic polynomial
does not have such a sequence

This proves the Abel-Ruffini theorem: there exists no general method
of solution by radicals for quintic and higher polynomials

Ross Dempsey (Johns Hopkins University) Galois and Solvability JHU Splash, 2018 27 / 27



Solution by Radicals

To solve a polynomial equation corresponds to descending the lattice
on the previous slide to build the splitting field

Galois’s theorem relates this to a sequence of groups with a particular
property

Such a sequence does not exist for all groups

Galois shows that the Galois group for the general quintic polynomial
does not have such a sequence

This proves the Abel-Ruffini theorem: there exists no general method
of solution by radicals for quintic and higher polynomials

Ross Dempsey (Johns Hopkins University) Galois and Solvability JHU Splash, 2018 27 / 27



Solution by Radicals

To solve a polynomial equation corresponds to descending the lattice
on the previous slide to build the splitting field

Galois’s theorem relates this to a sequence of groups with a particular
property

Such a sequence does not exist for all groups

Galois shows that the Galois group for the general quintic polynomial
does not have such a sequence

This proves the Abel-Ruffini theorem: there exists no general method
of solution by radicals for quintic and higher polynomials

Ross Dempsey (Johns Hopkins University) Galois and Solvability JHU Splash, 2018 27 / 27


	Group Theory
	Field Theory

	fd@rm@0: 


