Évariste Galois and the Solvability of Equations

Ross Dempsey

Department of Physics and Astronomy Johns Hopkins University

JHU Splash, 2018

Ross Dempsey (Johns Hopkins University)

Outline

- Modular arithmetic is arithmetic with an upper bound
- Example, modulo 5:

 $1+2 \equiv 3 \pmod{5}$, $2+3 \equiv 0 \pmod{5}$, $3+4 \equiv 2 \pmod{5}$

- Modular arithmetic is arithmetic with an upper bound
- Example, modulo 5:

 $1+2\equiv 3 \pmod{5}, \qquad 2+3\equiv 0 \pmod{5}, \qquad 3+4\equiv 2 \pmod{5}$

 \circ Basically: a set ($\{0,1,2,3,4\}$), and an operation (+)

Rubik's Cube

- There are a set of operations you can perform on a Rubik's cube
- Performing two in sequence is equivalent to another operation

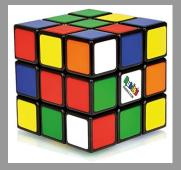


Figure: A Rubik's cube has 43,252,003,274,489,856,000 possible moves.

Rubik's Cube

- There are a set of operations you can perform on a Rubik's cube
- Performing two in sequence is equivalent to another operation
- Basically: a set $({FRL, ...})$, and an operation (\circ)

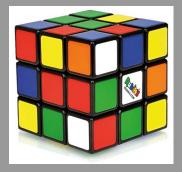


Figure: A Rubik's cube has 43,252,003,274,489,856,000 possible moves.

Definition of a Group

- A group G consists of:
 - $\,\circ\,$ A set UG
 - An associative operation \circ , closed in UG, with an identity and an inverse for each element of UG
- $\,\circ\,$ An Abelian group is one for which the operation $\,\circ\,$ is commutative

Definition of a Group

- A group G consists of:
 - $\,\circ\,$ A set UG
 - An associative operation $\circ,$ closed in UG, with an identity and an inverse for each element of UG
- $\,\circ\,$ An Abelian group is one for which the operation $\,\circ\,$ is commutative
- More examples:
 - Permutations of students
 - Symmetries of a pentagon
 - Rotations of a sphere

Groups as Symmetries

- Recipe for a group:
 - Take any object
 - Find the set of all transformations which leave that object invariant
 - This set, under composition, forms the symmetry group of the object

Groups as Symmetries

- Recipe for a group:
 - Take any object
 - Find the set of all transformations which leave that object invariant
 - This set, under composition, forms the symmetry group of the object
- All groups can be constructed in this way

Groups as Symmetries

- Recipe for a group:
 - Take any object
 - Find the set of all transformations which leave that object invariant
 - This set, under composition, forms the symmetry group of the object
- All groups can be constructed in this way
- Group theory is a powerful method for studying symmetries in a general way

Group Actions

- Even if a group comes from symmetries, the group itself is not tied to an object
- A group action specifies how elements of a group act on some object
- Example: group of 3D rotations has an action on 3D space
- If part of the object is left alone by an element of the group, we say it is a *fixed point* of that element

Subgroups

- Groups can have smaller groups, called subgroups living inside them
- When a symmetry is partially broken, the leftover symmetry group is a subgroup of the original
- Example: permutations

• • • • • •

Conjugacy Classes

- A group element g is said to be conjugate to h if $g = xhx^{-1}$ for some $x \in G$
- Elements of a group split into conjugacy classes of conjugate elements
- Example: rotations of a sphere are conjugate if they are by the same angle

$$R_z(45^\circ) = R_y(-90^\circ)R_x(45^\circ)R_y(90^\circ)$$

- A subgroup is normal if it consists of full conjugacy classes
- Was the subgroup of permutations in the previous example normal?
- How about the subgroup of rotations about the z axis only?

- A subgroup is normal if it consists of full conjugacy classes
- Was the subgroup of permutations in the previous example normal?
- How about the subgroup of rotations about the z axis only?
- Neither are normal. Do these groups have normal subgroups?

- A subgroup is normal if it consists of full conjugacy classes
- Was the subgroup of permutations in the previous example normal?
- How about the subgroup of rotations about the z axis only?
- Neither are normal. Do these groups have normal subgroups?
- \circ The permutations S_5 have the subgroup A_5

- A subgroup is normal if it consists of full conjugacy classes
- Was the subgroup of permutations in the previous example normal?
- How about the subgroup of rotations about the z axis only?
- Neither are normal. Do these groups have normal subgroups?
- \circ The permutations S_5 have the subgroup A_5
- The rotations SO(3) have no nontrivial normal subgroup, so it is called simple

Finite Simple Group of Order Two

https://www.youtube.com/v/UTby_e4-Rhg?rel=0

Ross Dempsey (Johns Hopkins University)

Galois and Solvability

Fields

- Groups are powerful, but can't capture everything
- Ordinary math involves two operations, multiplication and addition
- This can be captured by *fields*. A field is:
 - An Abelian group for the addition operation
 - A mutliplication operation, invertible for everything except 0, and distributive over addition
- Examples: \mathbb{Q} , \mathbb{R} , \mathbb{C}

• Consider the set of all numbers of the form $a + b\sqrt{2}$, where a and b are rational

- Consider the set of all numbers of the form $a + b\sqrt{2}$, where a and b are rational
 - Are the operations closed?

$$\begin{aligned} (a+b\sqrt{2}) + (c+d\sqrt{2}) &= (a+c) + (b+d)\sqrt{2}, \\ (a+b\sqrt{2})(c+d\sqrt{2}) &= (ac+2bd) + (ad+bc)\sqrt{2} \end{aligned}$$

- Consider the set of all numbers of the form $a + b\sqrt{2}$, where a and b are rational
 - Are the operations closed?

$$\begin{aligned} (a+b\sqrt{2})+(c+d\sqrt{2}) &= (a+c)+(b+d)\sqrt{2}, \\ (a+b\sqrt{2})(c+d\sqrt{2}) &= (ac+2bd)+(ad+bc)\sqrt{2} \end{aligned}$$

Is multiplication invertible?

$$\frac{1}{a+b\sqrt{2}} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2}$$

- Consider the set of all numbers of the form $a + b\sqrt{2}$, where a and b are rational
 - Are the operations closed?

$$\begin{aligned} (a+b\sqrt{2}) + (c+d\sqrt{2}) &= (a+c) + (b+d)\sqrt{2}, \\ (a+b\sqrt{2})(c+d\sqrt{2}) &= (ac+2bd) + (ad+bc)\sqrt{2} \end{aligned}$$

Is multiplication invertible?

$$\frac{1}{a+b\sqrt{2}} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2}$$

 $\,\circ\,$ All other properties inherit from the ambient field $\mathbb{R}.$ So yes, this is a field.

- Consider the set of all numbers of the form $a + b\sqrt{2}$, where a and b are rational
 - Are the operations closed?

$$\begin{aligned} (a+b\sqrt{2}) + (c+d\sqrt{2}) &= (a+c) + (b+d)\sqrt{2}, \\ (a+b\sqrt{2})(c+d\sqrt{2}) &= (ac+2bd) + (ad+bc)\sqrt{2} \end{aligned}$$

Is multiplication invertible?

$$\frac{1}{a+b\sqrt{2}} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2}$$

- All other properties inherit from the ambient field $\mathbb R.$ So yes, this is a field.
- \circ This is a *field extension* over the rationals, denoted $\mathbb{Q}(\sqrt{2})$

- For any (finite) field extension, we can define a degree
- Intuitively, a field extension is composed of elements like $a_1 + a_2\alpha + \ldots + a_n\zeta$, and n is the degree

- For any (finite) field extension, we can define a *degree*
- Intuitively, a field extension is composed of elements like $a_1 + a_2\alpha + \ldots + a_n\zeta$, and n is the degree
- Degree of $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} is 2, since elements are $a_1 + a_2\sqrt{2}$

- For any (finite) field extension, we can define a degree
- Intuitively, a field extension is composed of elements like $a_1 + a_2\alpha + \ldots + a_n\zeta$, and n is the degree
- Degree of $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} is 2, since elements are $a_1 + a_2\sqrt{2}$
- Degree is written as $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$

Construction by Compass and Straightedge

- You may have heard that it is impossible to trisect an angle via compass and straightedge
- To prove this, you can show that a compass and straightedge only permits degree 2 field extensions
- Trisection of angles requires a degree 3 field extension

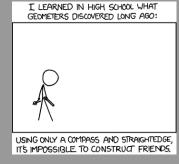


Figure: Impossiblity theorems are sad.

Splitting Fields

- Recipe for a field extension: take a polynomial, and adjoin all its roots to the base field
- Example: $x^2 2$ over \mathbb{Q} . Adjoin $\pm \sqrt{2}$ to \mathbb{Q} to form $\mathbb{Q}(\sqrt{2})$
- In the splitting field, a polynomial splits: $x^2 2 = (x + \sqrt{2})(x \sqrt{2})$

- Recipe for a field extension: take a polynomial, and adjoin all its roots to the base field
- Example: $x^2 2$ over \mathbb{Q} . Adjoin $\pm \sqrt{2}$ to \mathbb{Q} to form $\mathbb{Q}(\sqrt{2})$
- $\circ\,$ In the splitting field, a polynomial splits: $x^2-2=(x+\sqrt{2})(x-\sqrt{2})$
- The degree $[\mathbb{Q}(\alpha):\mathbb{Q}]$ equals the degree of the minimum polynomial of α over \mathbb{Q}

• What is the degree of the splitting field of $x^4 - 2 = 0$?

- What is the degree of the splitting field of $x^4 2 = 0$?
- The degree of $\mathbb{Q}(\sqrt[4]{2})$ is 4...but that's not the splitting field.

- What is the degree of the splitting field of $x^4 2 = 0$?
- The degree of $\mathbb{Q}(\sqrt[4]{2})$ is 4...but that's not the splitting field.
- \circ The roots are $\{\pm \sqrt[4]{2},\pm i \sqrt[4]{2}\}$, so we need $\mathbb{Q}(\sqrt[4]{2},i)$

- What is the degree of the splitting field of $x^4 2 = 0$?
- The degree of $\mathbb{Q}(\sqrt[4]{2})$ is 4...but that's not the splitting field.
- \circ The roots are $\{\pm \sqrt[4]{2},\pm i \sqrt[4]{2}\}$, so we need $\mathbb{Q}(\sqrt[4]{2},i)$

- What is the degree of the splitting field of $x^4 2 = 0$?
- The degree of $\mathbb{Q}(\sqrt[4]{2})$ is 4...but that's not the splitting field.
- \circ The roots are $\{\pm \sqrt[4]{2},\pm i \sqrt[4]{2}\}$, so we need $\mathbb{Q}(\sqrt[4]{2},i)$

$$\mathbb{Q}(\sqrt[4]{2},i)$$

$$2 \mid \\ \mathbb{Q}(\sqrt[4]{2})$$

$$4 \mid \\ \mathbb{Q}$$

Total degree: $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}] = [\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}(\sqrt[4]{2})][\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 4 \cdot 2 = 8$

Field Automorphisms

- Consider the field extension $\mathbb{Q}(\sqrt{2})$ and the map $f(a+b\sqrt{2})=a-b\sqrt{2}$
- This respects multiplication and addition:

$$f(x) + f(y) = f(x + y)$$
$$f(x) \cdot f(y) = f(x \cdot y)$$

- $\,\circ\,$ It also leaves elements of the base field ${\mathbb Q}$ alone
- \circ We call such a map a \mathbb{Q} -automorphism

Field Automorphisms

- Remember the recipe for groups? Take an object, look at transformations leaving its structure invariant.
- Field automorphisms are exactly this kind of construction
- The F-automorphisms of an extension E over a field F are called the Galois group of E over F

 Évariste Galois (1811–1832) was one of the most badass mathematicians ever

Figure: Évariste Galois at age 15.

- Évariste Galois (1811–1832) was one of the most badass mathematicians ever
- Tried to gain admission to École Polytechnique, but was rejected since the examiner couldn't understand his logical leaps

Figure: Évariste Galois at age 15.

- Évariste Galois (1811–1832) was one of the most badass mathematicians ever
- Tried to gain admission to École Polytechnique, but was rejected since the examiner couldn't understand his logical leaps
- Staunch revolutionary; after being expelled from École Normale for criticizing its director, he joined the National Guard

Figure: Évariste Galois at age 15.

- Évariste Galois (1811–1832) was one of the most badass mathematicians ever
- Tried to gain admission to École Polytechnique, but was rejected since the examiner couldn't understand his logical leaps
- Staunch revolutionary; after being expelled from École Normale for criticizing its director, he joined the National Guard
- Arrested for threatening the life of King Louis Philippe; later served six months in prison, where he continued his mathematical work

Figure: Évariste Galois at age 15.

• In 1832, Galois was somehow talked into a duel

Figure: Évariste Galois at age 15.

- In 1832, Galois was somehow talked into a duel
- He was shot in the abdomen, and died the next morning

Figure: Évariste Galois at age 15.

- In 1832, Galois was somehow talked into a duel
- He was shot in the abdomen, and died the next morning
- But, beforehand, he had collected all his mathematical thoughts in a letter

Figure: Évariste Galois at age 15.

- In 1832, Galois was somehow talked into a duel
- He was shot in the abdomen, and died the next morning
- But, beforehand, he had collected all his mathematical thoughts in a letter
- "This letter, if judged by the novelty and profundity of ideas it contains, is perhaps the most substantial piece of writing in the whole literature of mankind."

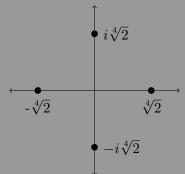
Figure: Évariste Galois at age 15.

The Galois Correspondence

- We have seen the Galois group, $\operatorname{Gal}(E/F)$: the group of F-automorphisms of E
- Galois showed that the subgroups of $\operatorname{Gal}(E/F)$ correspond to field extensions living between E and F
- This is the fundamental theorem of Galois theory

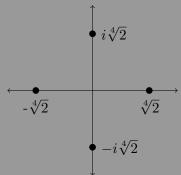
Example: $x^4 - 5x^2 + 6$

- \circ We have already seen that the splitting field of x^4-2 is $\mathbb{Q}(\sqrt[4]{2},i)$
- What are the Q-automorphisms?



Example: $x^4 - 5x^2 + 6$

- \circ We have already seen that the splitting field of x^4-2 is $\mathbb{Q}(\sqrt[4]{2},i)$
- What are the Q-automorphisms?



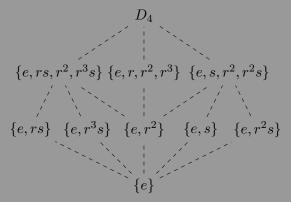
The automorphisms are the symmetries of the square, generated by rotations $\sqrt[4]{2} \to i\sqrt[4]{2}$ and reflections $i \to -i$

Example: $x^4 - 2$

- This group is called D_4 (in general, D_n are the 2n symmetries of an n-gon)
- Let's call the rotation r and the reflection s. What are the subgroups?

Example: $x^4 - 2$

- This group is called D_4 (in general, D_n are the 2n symmetries of an n-gon)
- Let's call the rotation r and the reflection s. What are the subgroups?



 $\circ\,$ Consider one of these subgroups, $\{e,rs\}.$ Which field elements does it leave invariant?

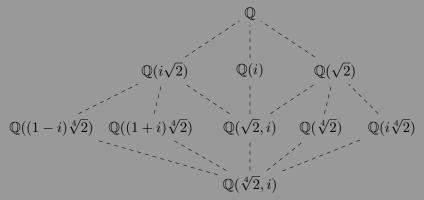
- $\circ\,$ Consider one of these subgroups, $\{e,rs\}.$ Which field elements does it leave invariant?
- Any element of the form $a + b(1-i)\sqrt[4]{2}$ is invariant

- $\circ\,$ Consider one of these subgroups, $\{e,rs\}.$ Which field elements does it leave invariant?
- Any element of the form $a + b(1-i)\sqrt[4]{2}$ is invariant
- Galois associates the field extension $\mathbb{Q}((1-i)\sqrt[4]{2})$ with this subgroup

- $\circ\,$ Consider one of these subgroups, $\{e,rs\}.$ Which field elements does it leave invariant?
- $\,\circ\,$ Any element of the form $a+b(1-i)\sqrt[4]{2}$ is invariant
- \odot Galois associates the field extension $\mathbb{Q}((1-i)\sqrt[4]{2})$ with this subgroup
- What happens if we make this association for each subgroup?

Example: $x^4 - 2$

- Every field extension between $\mathbb Q$ and $\mathbb Q(\sqrt[4]{2},i)$ appears
- Inclusion is reversed



- To solve a polynomial equation corresponds to descending the lattice on the previous slide to build the splitting field
- Galois's theorem relates this to a sequence of groups with a particular property

- To solve a polynomial equation corresponds to descending the lattice on the previous slide to build the splitting field
- Galois's theorem relates this to a sequence of groups with a particular property
- Such a sequence does not exist for all groups

- To solve a polynomial equation corresponds to descending the lattice on the previous slide to build the splitting field
- Galois's theorem relates this to a sequence of groups with a particular property
- Such a sequence does not exist for all groups
- Galois shows that the Galois group for the general quintic polynomial does not have such a sequence

- To solve a polynomial equation corresponds to descending the lattice on the previous slide to build the splitting field
- Galois's theorem relates this to a sequence of groups with a particular property
- Such a sequence does not exist for all groups
- Galois shows that the Galois group for the general quintic polynomial does not have such a sequence
- This proves the Abel-Ruffini theorem: there exists no general method of solution by radicals for quintic and higher polynomials