Richard Feynman, the Path Integral, and Least Action **Principles**

Ross Dempsey

Department of Physics and Astronomy Johns Hopkins University

JHU Splash, 2018

Ross Dempsey (Johns Hopkins University) [Feynman and Least Action](#page-35-0) Feynman and Least Action JHU Splash, 2018 1/23

Outline

1 [Least Action Principles](#page-2-0)

2 [Quantum Mechanics](#page-16-0)

3 [Path Integral Formulation](#page-27-0)

- \bullet Newton discovered that $\boldsymbol{F} = m \boldsymbol{a}$. This tells us how particles will move at each point in time
- What governs the overall trajectories?
- \circ Newton discovered that $\boldsymbol{F} = m \boldsymbol{a}$. This tells us how particles will move at each point in time
- What governs the overall trajectories?
- Newton's laws are equivalent to minimizing a quantity, *action*, which depends on whole trajectories
- No point in time is more special than the others, so the action should care equally about every time slice
- Write the action as an integral (sum) over all times:

$$
S=\int \mathcal{L}\, dt
$$

 \circ \mathcal{L} is the Lagrangian

Lagrangians and Theories

Mathematics gives a recipe for converting Lagrangians to equations of motion:

$$
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial x}.
$$

 \bullet Example: in mechanics, $\mathcal{L} = T - V$, the difference of kinetic and potential energies

Lagrangians and Theories

Mathematics gives a recipe for converting Lagrangians to equations of motion:

$$
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial x}.
$$

- \bullet Example: in mechanics, $\mathcal{L} = T V$, the difference of kinetic and potential energies
- Resulting equations of motion:

$$
m\ddot{x} = -\frac{\partial V}{\partial x} = F
$$

Newton's second law!

Electromagnetism

- Sometimes this is called "Lagrangian mechanics." This obscures a crucial fact: all known physical theories can be approached in the same way
- Example: Lagrangian for electromagnetism is

$$
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + 4\pi j_{\mu} A^{\mu} = \frac{1}{2} (E^2 - B^2)
$$

Using the recipe, this gives the dynamic Maxwell equations in a vacuum:

$$
\nabla \cdot \mathbf{E} = 4\pi \rho, \qquad \nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}
$$

Figure: Maxwell's equations on Etsy

Why care?

- If we already know Newton's laws and Maxwell's laws, why generate them with a Lagrangian?
- Lagrangians can be extremely powerful for understanding conservation laws
- Look again at the equations of motion:

$$
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial x}.
$$

What if $\mathcal L$ is independent of x ?

Why care?

- If we already know Newton's laws and Maxwell's laws, why generate them with a Lagrangian?
- Lagrangians can be extremely powerful for understanding conservation laws
- Look again at the equations of motion:

$$
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial x}.
$$

What if $\mathcal L$ is independent of x ?

Independence of x generates a conserved quantity $\frac{\partial \mathcal{L}}{\partial \dot{x}}$

Why care?

- If we already know Newton's laws and Maxwell's laws, why generate them with a Lagrangian?
- Lagrangians can be extremely powerful for understanding conservation laws
- Look again at the equations of motion:

$$
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial x}.
$$

What if $\mathcal L$ is independent of x ?

- Independence of x generates a conserved quantity $\frac{\partial \mathcal{L}}{\partial \dot{x}}$
- This is *Noether's theorem*: a symmetry generates a conservation law
- By applying Noether's theorem to time translation symmetry, we obtain conservation of energy
- The energy is given by

$$
\mathcal{H} = \sum \frac{\partial \mathcal{L}}{\partial \dot{x}_i} \dot{x}_i - \mathcal{L}
$$

This is also called the Hamiltonian

"My masterpiece of mischief happened at the fraternity."

- "My masterpiece of mischief happened at the fraternity."
- "Feynman! Did you take the doors?" "Oh, yeah!", I said. "I took the door. You can see the scratches on my knuckles here, that I got when my hands scraped against the wall as I was carrying it down into the basement."

- "My masterpiece of mischief happened at the fraternity."
- "Feynman! Did you take the doors?" "Oh, yeah!", I said. "I took the door. You can see the scratches on my knuckles here, that I got when my hands scraped against the wall as I was carrying it down into the basement."
- **The president says, 'That's a very** good idea. On the fraternity word of honor!' So he goes around the table and asks each guy, one by one:"

- "My masterpiece of mischief happened at the fraternity."
- "Feynman! Did you take the doors?" "Oh, yeah!", I said. "I took the door. You can see the scratches on my knuckles here, that I got when my hands scraped against the wall as I was carrying it down into the basement."
- \bullet "The president says, 'That's a very good idea. On the fraternity word of honor!' So he goes around the table and asks each guy, one by one:"
- "Feynman, did you take the door?" "Yeah, I took the door." "Cut it out, Feynman; this is serious!"

Quantum States

- Classical states have definite values for every observable
- Quantum theory allows for superpositions of definite states
- When expressed in terms of position states, quantum states are called wavefunctions

Example: Hydrogen

- Superpositions are interpreted as specifying probabilities
- Measurement of a quantum system forces it to collapse into a definite state, based on the probabilities
- Until it is measured, the system evolves as a superposition

Time Evolution

○ Quantum systems evolve according to the Schrödinger equation:

$$
i\hbar\frac{\partial}{\partial t}\ket{\psi}=\mathcal{H}\ket{\psi}
$$

 \circ The operator H is the quantum version of the Hamiltonian

Time Evolution

Quantum systems evolve according to the Schrödinger equation:

$$
i\hbar\frac{\partial}{\partial t}\ket{\psi}=\mathcal{H}\ket{\psi}
$$

 \circ The operator ${\mathcal H}$ is the quantum version of the Hamiltonian

o If a system is in a definite energy state, it evolves in a trivial way

Time Evolution

Quantum systems evolve according to the Schrödinger equation:

$$
i\hbar\frac{\partial}{\partial t}\ket{\psi}=\mathcal{H}\ket{\psi}
$$

- \circ The operator ${\mathcal H}$ is the quantum version of the Hamiltonian
- o If a system is in a definite energy state, it evolves in a trivial way
- In the most general case, time evolution can be expressed in terms of an operator U :

$$
|\psi(t_1)\rangle = U(t_1,t_0) |\psi(t_0)\rangle
$$

- **Schrödinger's equation is like Newton's; it has information for each** time slice, but not long-term information
- Can we write a Lagrangian for quantum mechanics?

- **Schrödinger's equation is like Newton's; it has information for each** time slice, but not long-term information
- Can we write a Lagrangian for quantum mechanics?
- Technically, yes:

$$
\mathcal{L} = \frac{i\hbar}{2} \left(\psi^* \dot{\psi} - \dot{\psi}^* \psi \right) - \frac{\hbar^2}{2m} \nabla \psi^* \nabla \psi - V(\mathbf{r}, t) \psi^* \psi
$$

- **Schrödinger's equation is like Newton's; it has information for each** time slice, but not long-term information
- Can we write a Lagrangian for quantum mechanics?
- Technically, yes:

$$
\mathcal{L} = \frac{i\hbar}{2}\left(\psi^*\dot{\psi}-\dot{\psi}^*\psi\right)-\frac{\hbar^2}{2m}\boldsymbol{\nabla}\psi^*\boldsymbol{\nabla}\psi-V(\boldsymbol{r},t)\psi^*\psi
$$

Where's the connection to the classical Lagrangian? It is present, but not evident.

- **Schrödinger's equation is like Newton's; it has information for each** time slice, but not long-term information
- Can we write a Lagrangian for quantum mechanics?
- Technically, yes:

$$
\mathcal{L} = \frac{i\hbar}{2}\left(\psi^*\dot{\psi}-\dot{\psi}^*\psi\right)-\frac{\hbar^2}{2m}\boldsymbol{\nabla}\psi^*\boldsymbol{\nabla}\psi-V(\boldsymbol{r},t)\psi^*\psi
$$

- Where's the connection to the classical Lagrangian? It is present, but not evident.
- **•** "Beauty is the first test." This fails.

Break: Feynman and the Safe

- Feynman worked on the Manhattan project in Los Alomos during World War II
- "To demonstrate that the locks meant nothing, whenever I wanted somebody's report and they weren't around, I'd just go in their office, open the filing cabinet, and take it out. When I was finished I would give it back to the guy: "Thanks for your report."'
- "I opened the safes which contained all the secrets to the atomic bomb: the schedules for the production of the plutonium, the purification procedures, how much material is needed, how the bomb works..."

Double Slit Experiment

Since quantum mechanics allows for superpositions, an electron can go through two slits at once to get to a screen on the opposite side

Before we wrote time evolution in a single step:

$$
|\psi(t_1)\rangle = U(t_1,t_0) |\psi(t_0)\rangle
$$

 \bullet We could also break up the time evolution into N steps:

 $|\psi(t_N)\rangle = U(t_N, t_{N-1})U(t_{N-1}, t_{N-2})\cdots U(t_1, t_0)|\psi(t_0)\rangle$

Slicing up the Double Slit

- Breaking up time evolution is somewhat like making a measurement at multiple points along a path
- One way of making a measurement is to use a double slit apparatus and check which slit the particle goes through

Turning off Measurements

- If we don't make measurements at the slits, the particle can be in a superposition
- The particle can take all possible paths through the slits

Fine-Grained Slits

- \circ Instead of a double slit, how about three? Four? N ?
- By adding slits, we increase the freedom of the particle to take multiple paths
- **In the limit, there are no slits, just an open space**

Summing over Paths

- We now have a new picture of quantum mechanics: particles taking all possible paths from point A to point B
- If this is how particles work, how come classically we see a single path?

Classical Limit

In the sum over paths, each one is weighted by a *phase factor*. Formally,

$$
\langle f|i\rangle = \int \mathcal{D}x(t)e^{iS[x(t)]}
$$

 \circ Since the quantity S varies, these factors cancel out

Classical Limit

In the sum over paths, each one is weighted by a *phase factor*. Formally,

$$
\langle f|i\rangle = \int \mathcal{D}x(t)e^{iS[x(t)]}
$$

- \bullet Since the quantity S varies, these factors cancel out
- \bullet Except at the path where S is minimized

Classical Limit

- \bullet The quantity S is the *classical action for the path*
- The path integral reproduces the principle of least action

