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Euler the Great

Euler was possibly the most productive
mathematician ever

Created enough work to fill 74 volumes
Over 866 items, including cutting-edge
papers, expository books, technical
manuals
Many more volumes of correspondence

Contributed to nearly every area of
mathematics and physics in his time,
and spawned several new areas

Figure: Leonhard Euler,
1707–1783
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Peter the Great

Peter the Great was intent on
modernizing Russia, which included
creating an Academy of Sciences

Russia had no native talent, so foreign
scientific minds were imported,
including the young Euler in 1727

In 1733, became head mathematician
and married Katharina Gsell

Became blind in one eye in 1738; “Now
I will have fewer distractions”

Figure: Peter the Great,
1672–1725
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Frederick the Great

Frederick the Great aspired to be a
“philosopher-king” of Prussia, and
revived the Berlin Academy of Sciences

Political turmoil was causing problems
in St. Petersburg, so Euler moved to
Berlin and joined the Academy

Russians maintained great respect for
Euler

Frederick the Great appreciated Euler’s
accomplishments but wasn’t fond of
him personally Figure: Frederick the Great,

1712–1786
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Catherine the Great

Catherine the Great became empress of
Russia in a coup d’etat of her brother

Sought to revive the Academy of
Sciences, which amounted to bringing
Euler back

Euler returned, welcomed as a celebrity

His mathematical output continued
until the day of his death, despite full
blindness

Figure: Catherine the Great,
1729–1796
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Basel Problem

Consider the series

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+ . . . .

Finding the exact sum was posed by Pietro Mengoli in 1644

Euler solved the problem in 1734, when he was 28
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Taylor Approximation

Every function can be approximated by polynomials

The Taylor series of a function is an infinite polynomial

In some cases, a function is equal to its Taylor series. This is true of
the sine function:

sinx = x− x3

6
+

x5

120
− . . .
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Infinite Products

Finite polynomials can be factored into linear polynomials, one for
each root:

x3 − 4x2 − 11x+ 30 = (x− 2)(x+ 3)(x− 5)

This can also be done for infinite polynomials. What are the roots of

x− x3

6
+

x5

120
− . . .?
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Infinite Products

Since sinx = 0 at x = πn, these are the roots. So the factorization
looks like

sinx = x− x3

6
+

x5

120
− . . . = x(x− 2π)(x+ 2π)(x− 4π)(x+ 4π) · · ·

As written, this would give an infinite linear term. So, rewrite as

sinx = x
(
1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)
· · ·

Now the linear term is fixed to x. The quadratic term is zero. What
is the cubic term?
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Infinite Products

Write each factor
(
1− x

πn

) (
1 + x

πn

)
as 1− x2

π2n2 :

sinx = x

(
1− x2

π2

)(
1− x2

π2 · 22

)(
1− x2

π2 · 32

)
· · ·

The cubic term is

− 1

2π
− 1

2π · 22
− · · · = − 1

π2

∞∑
n=1

1

n2

By comparing with the Taylor series, Euler concluded

∞∑
n=1

1

n2
=
π2

6
.
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Bridges of Königsberg

The city of Königsberg had seven
bridges over the river Pregel

Euler wondered if one could walk
through the city, crossing each bridge
exactly once

Do you see a way to do this?
Figure: The bridgs of
Königsberg in 1736.
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Graph Theory

Euler invented graph theory to solve this problem. Graph theory is
now an important part of mathematics

A graph is a collection V of vertices, and a collection E of edges
between them

What are the vertices and edges in Königsberg?
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Königsberg Graph

Islands are vertices, bridges are edges

Representing the city as a graph allows
us to ignore all the particulars of
Königsberg and focus on the underlying
mathematical question

Is there a path on this graph which
crosses every edge exactly once?

Figure: The bridgs of
Königsberg form a graph.
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Eulerian Path

Such a path is today called an Eulerian
path

A simple criterion exists for determining
if a graph has an Eulerian path

What is the degree, or number of
adjacent edges, for each vertex?

How do vertices with odd degree affect
the formation of an Eulerian path?

Figure: The bridges of
Königsberg form a graph.
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Eulerian Circuit

Euler realized that crossing each bridge
exactly once in a closed loop requires
an even degree for each vertex

Likewise, to go from one vertex to
another on an Eulerian path, the start
and finish vertices should have odd
degree and the rest should have even
degree

This is considered the first theorem of
graph theory

Figure: The bridges of
Königsberg form a graph.
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Modern Königsberg

The city of Königsberg is now called
Kaliningrad

During World War II, the city was
bombed, and two bridges did not
survive

One has apparently been added

Is there an Eulerian path now? Is there
an Eulerian circuit? Figure: Modern-day Königsberg

bridges
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Brussels Sprouts

The Eulerian circuit problem is pretty easy

Graph theory can be much, much more subtle

An example of medium difficulty: Brussels Sprouts

Ross Dempsey (Johns Hopkins University) Euler: Master of us All JHU Splash, 2018 18 / 24



Polyhedra

A polyhedron is the 3D equivalent of a
polygon

Name some polyhedra

Figure: Some wooden polyhedra
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Platonic Solids

If all the sides of a polyhedron are identical, it is a Platonic solid

The five Platonic solids, with their vertex, edge, and face counts, are
listed below. Do you notice anything?

V E F
Tetrahedron 4 6 4
Cube 8 12 6
Octahedron 6 12 8
Dodecahedron 20 30 12
Icosahedron 12 30 20
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Euler’s Formula

It’s okay if you didn’t – mathematicians missed this for millenia

Here they are again, with another quantity listed

V E F V − E + F
Tetrahedron 4 6 4 2
Cube 8 12 6 2
Octahedron 6 12 8 2
Dodecahedron 20 30 12 2
Icosahedron 12 30 20 2

Ross Dempsey (Johns Hopkins University) Euler: Master of us All JHU Splash, 2018 21 / 24



Topology

Why does this work for all polyhedra?

In modern mathematics, we express this fact as χ(S2) = 2

S2 denotes the 2-sphere (the sphere which lives in 3-space)
χ is the Euler characteristic, which in two dimensions is V − E + F

The Euler characteristic χ is a topological invariant
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Topology

Topology does not care about the exact
structure of an object

Manifolds, like S2, can be stretched and
deformed in continuous ways

All polyhedra are topologically
equivalent to one another and to S2

Figure: In topology, coffee cups
are equivalent to donuts
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Twelve-Pentagon Theorem

A soccer ball is made of pentagons and hexagons. Three faces meet
at each vertex. How many pentagons does it have?

Use Euler’s formula. We have:

3V = 5n5 + 6n6
2E = 5n5 + 6n6
F = n5 + n6

Euler tells us
V − E + F =

n5
6

= 2,

so n5 = 12
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