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What is a Set?

A set is a collection of objects, denoted S =

{
1,∇, E,

(
1 0
1 1

)}
The objects within a set are known as elements, and are denoted
1 ∈ S or 2 6∈ S
If every element of T is an element of S, then T ⊆ S

How many subsets does a set with n elements have?

The empty set with no elements is denoted ∅. ∅ ⊂ S for every set S

Union of sets is denoted A ∪B; intersection is A ∩B
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Category of Sets

A function f : A→ B between two sets A and B specifies an element
f(a) ∈ B for every a ∈ A
How many functions are there from a set A with n elements to a set
B with m elements?

The category of sets consists of all the sets together with all set
functions

An isomorphism (or bijection) between two sets A and B consists of:

Two functions, f : A→ B and g : B → A
Such that f ◦ g = 1A and g ◦ f = 1B

Isomorphism partitions the sets into classes, called cardinal numbers
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Cardinal Numbers

Every natural number (0, 1, 2, . . .) is a cardinal number

What about infinite sets? Are they all isomorphic?

N = {0, 1, 2, . . .}
Z = {. . . ,−2,−1, 0, 1, 2, . . .}
2Z = {. . . ,−4,−2, 0, 2, 4, . . .}
Q = {1/2, 68/37, 4/5, . . .}
R = {1, e,

√
5, . . .}
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Cardinal of the Continuum

Georg Cantor proved that the natural numbers N are not isomorphic
to the real numbers R
The argument is called Cantor diagonalization. Take any function
f : N→ R. Then:

To be a bijection, f must “hit” every real number

But try listing out all the real numbers f(n) in decimal form:

f(0) = 1.18736582175

f(1) = 3.23904875843

f(2) = 6.85789342753

f(3) = 0.52118781334

Use the diagonal to construct a new number: 0.2482 . . .
The new number does not equal f(n) for any n

The cardinal of R is denoted c, and called the cardinal of the
continuum
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Infinity of Infinities

Cantor diagonalization can be used to prove a more general fact

Let S be a set and 2S be its power set, the set of subsets of S

Let f : S → 2S be any set function. Then construct a subset T ⊂ S
according to:

If s ∈ f(s), s 6∈ T
If s 6∈ f(s), s ∈ T

Then T 6= f(s) for any s ∈ S
This means the cardinal of 2S is greater than the cardinal of S, for
any S
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Infinity Can’t Be That Easy

Let S = {sets not containing themselves} = {x ∈ Set | x 6∈ x}
Does S contain itself?

If S ∈ S, then S 6∈ S
If S 6∈ S, then S ∈ S

Put another way: a barber shaves every man in his town who does
not shave themselves. Does the barber shave himself?

This is Russell’s paradox. It shows that näıve set theory is
inconsistent.
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Zermelo-Frankel Set Theory

Set theory is the foundation of all mathematics. It must be made
consistent

The Zermelo-Frankel (ZF) axioms fix Russell’s paradox

Key idea: build a universe of sets in stages: sets, sets containing sets,
sets containing sets containing sets, ...
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Axiom of Choice

ZF set theory is often endowed with an additional axiom: the axiom
of choice. It becomes ZFC set theory

The axiom of choice says that, given a collection of sets, it is possible
to choose a single element from each set

Does this seem reasonable?
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Axiom of Choice

Infinity is a dangerous game

An axiom should be judged by its consequences. Consequences of AC:

Well-ordering theorem: every set can be ordered in such a way that
every subset has a least element
Non-measurable sets: there exist subsets of the plane which cannot be
assigned an area
You can win an infinite hat game

However, AC is also essential for many fundamental results in
mathematics. So we keep it in.
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Formal Systems

Formal systems consist of

Syntax: rules for forming expressions, called well-formed formulas (wffs)
Semantics: rules for understanding a given expression

Some examples:

basic logic (propositional calculus)
first-order logic (predicate calculus)
Peano arithmetic
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Propositional Calculus

Syntax:

Variables A,B, . . . refer to true (T) or false (F)
Symbol ¬A refers to the negation of A
Logical connectives: A ∨B (A or B), A ∧B (A and B), A =⇒ B (A
implies B), A ⇐⇒ B (A iff B)

Semantics:

Build up the truth value from the individual pieces. Example:

A = it is raining today

B = everyone showed up for this class

C = Donald Trump is the President of the United States

(A ∨ C) ∧ (B =⇒ (¬A ∧ C)) ∧ (C ⇐⇒ A)
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Predicate Calculus

Propositional calculus tells us about truth of statements, but not
about statements themselves

We translated “Donald Trump is the President of the United States”
as C, which forgets structure

A better translation: P (dt, us), where

dt is a variable referring to Donald Trump
us is a variable referring to the United States
P (x, y) is a predicate symbol which is true when x is the president of y

Predicate calculus uses expressions like this to better capture “things”
and relations between them
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Predicate Calculus

Predicate calculus can use quantifiers to make statements about
collections of things

∃ → there exists
∀ → for all
Example: ∀x(Cx =⇒ ∃y(L(y, x)), where

C(x) is a predicate symbol meaning x is a country
L(a, b) is a predicate symbol meaning a is the leader of b

Sentences in predicate calculus generally can’t be evaluated on their
own

Models: interpretations of variables and predicate symbols
Example model: domain = {Donald Trump, United States, Botswana},
C = {United States, Botswana}, L = {(Donald Trump, United
States)}
Is the above sentence true or false relative to this model?
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Practice

Translate the following sentences into predicate calculus:

In every school, there is a bully.
If it is raining here, then it is raining in every adjacent city.
The best dog is a labrador.
Students who get As become lawyers.

Predicate calculus is great! Can it express everything?
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Ross Dempsey (Johns Hopkins University) Cantor, Gödel, and Incompleteness JHU Splash, 2018 16 / 27



Infinity Strikes Again

Remember we showed that the real numbers are uncountable?
Translate this into predicate calculus.

Spoiler: you can’t
Löwenheim-Skolen Theorem: if a theory has an infinite model of
cardinality λ, it has models with every cardinality exceeding λ
In plain English: if you try to use predicate calculus to pin down the
real numbers, you’ll inevitably include things you didn’t intend
(Aside: for the real numbers, you get “nonstandard analysis”)

Takeaway: logic has its limits. How deep are they?
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Interlude: Peano Arithmetic

The Peano axioms are an attempt to formalize arithmetic on natural
numbers, using 0 and S, the successor function (+1)

(S1) ∀x(S(x) 6= 0)
(S2) ∀x∀y(S(x) = S(y) =⇒ x = y)
(A1) ∀x(x+ 0 = x)
(A2) ∀x∀y(x+ S(y) = S(x+ y))
(M1) ∀x(x · 0 = 0)
(M2) ∀x∀y(x · S(y) = x · y + x)
(IS) For any formula φ, (φ(x) =⇒ φ(S(x))) =⇒ (∀x(φ(x)))

Ross Dempsey (Johns Hopkins University) Cantor, Gödel, and Incompleteness JHU Splash, 2018 18 / 27



Gödel Numbering

Asking about the limits of logic is “metalogical.” Can we translate a
metalogical claim into good old logic?

The objects of logic (concerning arithmetic) are numbers. The
objects of “metalogic” are logical formulas themselves.

So: can we translate logical statements about arithmetic into
numbers?
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Gödel Numbering

Yes, via Gödel numbering:

Associate to each symbol of the system a natural number. For example:

() 0S ¬∨ ∧ =⇒ ⇐⇒ ∀ ∃ = ...

12 34 56 78 910 11...

Given a formula, such as ∃x(S(S(x)) = S(S(S(S(0))))):

Convert each symbol to its number: 10 12 1 4 1 4 1 12 2 2 11 4 1 4 1
4 1 4 1 3 2 2 2 2 2
Use these as exponents in a prime factorization:

210312517411113417119122322923111374×

411434471534591614671713732792832892972

Prime factorizations are unique, so every formula gets a unique number
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Gödel Numbering

How about proofs?

A proof is a sequence of formulas φ1, φ2 . . . , φn, such that each
statement follows from the previous one.
Associate to each statement its Gödel number α1, α2, . . . , αn
Form the sequence number 2α13α2 · · ·

Now we can build predicates on natural numbers that tell us about
the structure of logic

Let G(φ) denote the Gödel number of the sentence φ
Let f(x, y) be the Gödel number of the formula obtained by replacing
occurences of z in the formula labeled by x with the number y
Let Γ(x, y) indicate that y is the sequence number of a proof ending in
the statement with Gödel number x
Difficult exercise: translate the following (true) claim into English:

∃x(x = G(φ) ∧ ∃y1(Γ(G(φ), y1)) ∧ ∃y2(Γ(G(¬φ), y2)))

=⇒ ∀x(∃y(Γ(x, y)))
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Gödel’s First Incompleteness Theorem

Consider the formula ¬∃y(Γ(f(z, z), y)); there does not exist a proof
of some statement (the statement numbered by z with occurrences of
z replaced by z itself)

Let the Gödel number of this be i

Consider the formula ¬∃y(Γ(f(i, i), y)) with Gödel number j. Note
j = f(i, i)

If the underlying formal system is consistent, this last formula is not
provable. Proof:

Suppose it is provable. Let k be the sequence number of the proof.
Then Γ(j, k) holds, which means Γ(f(i, i), k) holds.
But then ∃y(Γ(f(i, i), y))...so the system is inconsistent, a
contradiction.
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Gödel’s First Incompleteness Theorem

Now consider the opposite sentence, ∃y(Γf(i, i), y)

This is also not provable. Proof:

Suppose it is provable. Then Γ(j, k) = Γ(f(i, i), k) can’t hold for any k
Thus, for every number k, ¬Γ(f(i, i), k) is provable
But this contradicts the sentence itself, ∃y(Γf(i, i), y)

Conclusion: there is a sentence such that neither it nor its negation is
provable. This sentence is undecidable.
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Implications

The usual statement of Gödel’s theorem: for any axiom system of
arithmetic, there are sentences which are undecidable.

Disappointing, but what if the undecidable sentences are all so
obscure they never arise?

Not so. Real questions in mainstream mathematics have been shown to
be undecidable.
One example: Diophantine solvability. Can a given equation be solved
in integers?
Cool example: mortal matrices. Can a given set of matrices be
mulitiplied in some order to give the zero matrix?

Ross Dempsey (Johns Hopkins University) Cantor, Gödel, and Incompleteness JHU Splash, 2018 24 / 27
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in integers?

Cool example: mortal matrices. Can a given set of matrices be
mulitiplied in some order to give the zero matrix?
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Big Example: Continuum Hypothesis

Recall we showed that the cardinal of N, ℵ0, is less than the cardinal
of R, c

A natural question: is there a cardinal in between?

Georg Cantor believed the answer to be no, but couldn’t prove this

Not his fault: in 1963, the continuum hypothesis was proved to be
undecidable in ZFC set theory
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Cantor’s Insanity

Cantor spent his life in this world of
infinity confusions

The cause, nature, and extent of his
mental disorder are not readily
apparent, but:

He definitely suffered from bipolar
disorder
He was ostracized from mathematics,
largely by Kronecker, which didn’t
help matters
He was the first person to see some of
the most mind-boggling facts in
mathematics, which definitely didn’t
help matters Figure: Georg Cantor,

1845–1918
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Gödel’s Insanity

Mathematics was considered the most
unimpeachable, unassailable discipline
for millennia

Gödel watched this entire house of
cards fall

Always a quirky character: citizenship
debacle
Developed an irrational fear of being
poisoned towards the end of his life
Eventually starved himself to death

Figure: Kurt Gödel, 1906–1978
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