
Alan Turing, World War II, and the Theory of
Computation

Ross Dempsey

Department of Physics and Astronomy
Johns Hopkins University

JHU Splash, 2018

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 1 / 31

Outline

1 Enigma in World War II
Enigma Machine
Polish Codebreaking Effort
Bletchley Cryptanalysis
Construction of Bombes
Consequences

2 Automata and Computing
Automata and Languages
Turing Machines

3 Theory of Computation
Undecidability
Complexity Classes

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 2 / 31

Invention of Enigma

Enigma invented by Arthur Scherbius

Implemented a more robust substitution
cipher

A→ D

B → A

C →M

D → T

... Figure: U.S. Patent 1,657,411
for the Enigma machine.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 3 / 31

Adoption

Adopted first by the Reichsmarine in
1926

Three rotors from a set of five
Reflector for extra encryption

Over 100 billion configurations from the
plugboard alone

Gelmans considered Enigma
unbreakable Figure: One of many

military-enhanced Enigma
designs, equipped with extra
rotors and a plugboard.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 4 / 31

Polish Cipher Bureau

The Polish Cipher Bureau found an
Enigma machine

Marian Rejewski applied pure
mathematics to its design

Conjugacy classes of pelmutations are
given by cycle structure

Decrypted 75% of messages before
Gelmans changed scheme Figure: Marian Rejewski, a

Polish mathematician who made
considerable progress in Enigma
cryptanalysis.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 5 / 31

Polish Contribution

Five weeks before war, the Poles
infolmed the Allies

“Ultra would never have gotten off the
ground if we had not learned from the
Poles, in the nick of time, the details
both of the Gelman military...Enigma
machine, and of the operating
procedures that were in use.” – Gordon
Welchman Figure: A perforared Zygalski

sheet, one of the tools used by
the Polish cryptanalysts.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 6 / 31

Bletchley Park

British Government Code & Cipher
School (GC&CS) bought Bletchley in
1938

Situated conveniently between Oxford
and Cambridge

Began recruiting “men of the professor
type” before the war

Alan Turing
Gordon Welchman
Peter Twinn

Figure: Codebreakers arrive at
the Bletchley Park mansion in
1939.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 7 / 31

Crib Detection

Decryption relied on “cribs,” or known
plaintext

Cribs were based on weather reports
and other predictable messages

Figure: The British used cribs to
detelmine the daily keys on
Gelman keysheets.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 8 / 31

Enigma Captures

The Royal Navy assisted Bletchley by
capturing Enigma equipment

Rotor wheels from U-33 in 1940
Keysheet from U-110 in 1941

Sometimes cribs were planted and
“gardened” by placing mines in known
locations

Figure: The British used cribs to
detelmine the daily keys on
Gelman keysheets.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 9 / 31

British Bombe

To automate much of the cryptanalysis
process, Alan Turing designed the
bombe

Starting in 1941, Wrens began
operating bombes

Figure: A working rebuilt bombe
at the Bletchley Park museum.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 10 / 31

British Bombe

http://www.youtube.com/v/Hb44bGY2KdU?rel=0

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 11 / 31

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

http://www.youtube.com/v/Hb44bGY2KdU?rel=0

Battle of the Atlantic

When GC&CS began decrypting
messages at full capacity, shipping
losses dropped by 2/3

Blackout in 1942 → increase in shipping
losses → Alan Turing breaks TRITON

Ten day blackout in 1943 → Britain
near defeat → “Black May”

Figure: A British ship sinks a
Gelman U-boat.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 12 / 31

Overall Effects

“And altogether therefore the war would
have been something like two years longer,
perhaps three years longer, possibly four
years longer than it was. . . . I think we
would have won but it would have been a
long and much more brutal and destructive
war.” – Harry Hinsley Figure: American Liberty ships

creating a sheltered area around
Omaha beach.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 13 / 31

Turing’s Machine

https://www.youtube.com/v/M47hsaYWZE?rel=0

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 14 / 31

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

https://www.youtube.com/v/M47hsaYWZE?rel=0

Automata

How does a machine go about
computing?

Automata provide a model of
computation which is well-suited for
machines

Different automata have different levels
of computational ability

Level of ability detelmined by which
languages can be decided

Figure: An example of a
detelministic finite automaton

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 15 / 31

Detelministic Finite Automata

A DFA is made of a finite number of
states (circles)

Each bit of input moves the machine to
its next state (arrows)

String is accepted if the machine
finishes in accept state (double circle)

Which of these strings are accepted?

010101
110011
101001

What set of strings, or language, is
accepted?

Figure: An example of a
detelministic finite automaton

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 16 / 31

Regular Languages

A regular language is encoded by a regular expression

The essential ingredients for regular expressions are:

Kleene closure (∗): x∗ = {∅, x, xx, xxx, . . .}
Union (|): x|y = {x, y}
Concatenation: xy = {xy}

What is the language (1∗01∗01∗)∗?

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 17 / 31

Divisibility by 5

Binary strings are numbers; e.g., 100112 = 1910

We will read numbers in reverse order: 11001→ 19

Is it possible to construct a DFA to check for divisibility by 5?

Yes. How many states will we need?

20. Each state stores a remainder modulo 5 (0-4), and the remainder
of the next power of 2 (1-4)

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 18 / 31

Divisibility by 5

Binary strings are numbers; e.g., 100112 = 1910

We will read numbers in reverse order: 11001→ 19

Is it possible to construct a DFA to check for divisibility by 5?

Yes. How many states will we need?

20. Each state stores a remainder modulo 5 (0-4), and the remainder
of the next power of 2 (1-4)

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 18 / 31

Divisibility by 5

Binary strings are numbers; e.g., 100112 = 1910

We will read numbers in reverse order: 11001→ 19

Is it possible to construct a DFA to check for divisibility by 5?

Yes. How many states will we need?

20. Each state stores a remainder modulo 5 (0-4), and the remainder
of the next power of 2 (1-4)

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 18 / 31

Sometimes Things Get Messy

(0, 1)start

(0, 2)

(0, 4)

(0, 3)

(1, 1)

(1, 2)

(1, 4)

(1, 3)

(2, 1)

(2, 2)

(2, 4)

(2, 3)

(3, 1)

(3, 2)

(3, 4)

(3, 3)

(4, 1)

(4, 2)

(4, 4)

(4, 3)

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 19 / 31

DFAs decide Regular Languages

There is an algorithm to convert
between DFAs and regular expressions

Every DFA accepts a regular language;
every regular language is accepted by a
DFA

Which languages are regular?

Numbers divisible by n?
Strings with five 1s?
Strings with 2n symbols?
Balanced strings [0→ (, 1→)]?

Figure: Regular languages do not
include all interesting languages.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 20 / 31

Decidable Languages

The most interesting class of languages
is all languages which can be decided by
any finite process

What automata can decide these
languages?

Turing machines can decide all
“recursively enumerable” languages

It is believed that these are all the
decidable languages

Figure: A slate statute of Alan
Turing holding the Enigma.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 21 / 31

Decidable Languages

The most interesting class of languages
is all languages which can be decided by
any finite process

What automata can decide these
languages?

Turing machines can decide all
“recursively enumerable” languages

It is believed that these are all the
decidable languages

Figure: A slate statute of Alan
Turing holding the Enigma.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 21 / 31

Turing Machines

A Turing machine is similar to a DFA: it
has a collection of states, with rules for
moving between them

The input is given on a Turing tape

Turing machines can move along their
tape and modify it one step at a time

Figure: Turing machines use a
tape to read and write memory.

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 22 / 31

Example: Strings of Length 2n

We determined that strings of length 2n do not form a regular
language

Does the addition of a Turing tape allow us to decide this language?

Idea: repeatedly halve length of string.
1001→ 1X0X → XX0X → XXXX

If not a power of two, the machine will notice:
110110→ 1X0X1X → reject

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 23 / 31

Example: Strings of Length 2n

We determined that strings of length 2n do not form a regular
language

Does the addition of a Turing tape allow us to decide this language?

Idea: repeatedly halve length of string.
1001→ 1X0X → XX0X → XXXX

If not a power of two, the machine will notice:
110110→ 1X0X1X → reject

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 23 / 31

Example: Strings of Length 2n

We determined that strings of length 2n do not form a regular
language

Does the addition of a Turing tape allow us to decide this language?

Idea: repeatedly halve length of string.
1001→ 1X0X → XX0X → XXXX

If not a power of two, the machine will notice:
110110→ 1X0X1X → reject

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 23 / 31

More Volunteers Please

Astart B

C

D E

F

G

X,XR

, L X,XR

X,XR

0,0R

1,1R

0,XR

1,XR

0,0R

1,1R

, L

X,XL

, R

X,XL

X,XL

0,0L

1,1L

0,XL

1,XL

0,0L

1,1L

, R

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 24 / 31

Universal Turing Machine

The diagram on the previous slide is akin to a computer program

Computers can run arbitrary programs; can a Turing machine?

Universal Turing Machine (UTM)

Takes another Turing machine and data as input
Simulates given Turing machine on the input
Can compute anything your laptop can compute (and more: the UTM
has infinite memory)

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 25 / 31

Undecidable Languages

Deterministic finite automata were limited to regular languages

Turing machines are limited to decidable languages

How could a language be undecidable?

Consider HALT, the language of inputs to a UTM which eventually
terminate
What if there were a Turing machine T which decided HALT?

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 26 / 31

Undecidable Languages

Deterministic finite automata were limited to regular languages

Turing machines are limited to decidable languages

How could a language be undecidable?
Consider HALT, the language of inputs to a UTM which eventually
terminate

What if there were a Turing machine T which decided HALT?

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 26 / 31

Undecidable Languages

Deterministic finite automata were limited to regular languages

Turing machines are limited to decidable languages

How could a language be undecidable?
Consider HALT, the language of inputs to a UTM which eventually
terminate
What if there were a Turing machine T which decided HALT?

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 26 / 31

Halting Problem is Undecidable

Proof: let T be a Turing machine which accepts strings in HALT

Let T ′ be a Turing machine which simulates T on its input and:

If T accepts, T ′ enters an infinite loop
If T rejects, T ′ terminates

Now run the machine T ′ on the input T ′

If T ′ halts, then T accepts, and then T ′ enters an infinite loop →
contradiction
If T ′ enters an infinite loop, then T rejects, and T ′ terminates →
contradiction

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 27 / 31

Halting Problem is Undecidable

Proof: let T be a Turing machine which accepts strings in HALT

Let T ′ be a Turing machine which simulates T on its input and:

If T accepts, T ′ enters an infinite loop
If T rejects, T ′ terminates

Now run the machine T ′ on the input T ′

If T ′ halts, then T accepts, and then T ′ enters an infinite loop →
contradiction
If T ′ enters an infinite loop, then T rejects, and T ′ terminates →
contradiction

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 27 / 31

Halting Problem is Undecidable

Proof: let T be a Turing machine which accepts strings in HALT

Let T ′ be a Turing machine which simulates T on its input and:

If T accepts, T ′ enters an infinite loop
If T rejects, T ′ terminates

Now run the machine T ′ on the input T ′

If T ′ halts, then T accepts, and then T ′ enters an infinite loop →
contradiction
If T ′ enters an infinite loop, then T rejects, and T ′ terminates →
contradiction

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 27 / 31

Decidable Languages

Not all decidable languages – i.e., solvable problems – are equal

Consider the following languages:

SORT = {sorted lists of integers}
LIN-SOLVABLE =
{linear systems of equations which have solutions}
SAT = {Boolean expressions that are satisfiable}

SORT can be decided in linear time, by reading through the list

LIN-SOLVABLE can be decided in cubic time, using Gaussian
elimination

SAT can be decided in exponential time, by trying all combinations
of variables

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 28 / 31

Decidable Languages

Not all decidable languages – i.e., solvable problems – are equal

Consider the following languages:

SORT = {sorted lists of integers}
LIN-SOLVABLE =
{linear systems of equations which have solutions}
SAT = {Boolean expressions that are satisfiable}

SORT can be decided in linear time, by reading through the list

LIN-SOLVABLE can be decided in cubic time, using Gaussian
elimination

SAT can be decided in exponential time, by trying all combinations
of variables

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 28 / 31

Decidable Languages

Not all decidable languages – i.e., solvable problems – are equal

Consider the following languages:

SORT = {sorted lists of integers}
LIN-SOLVABLE =
{linear systems of equations which have solutions}
SAT = {Boolean expressions that are satisfiable}

SORT can be decided in linear time, by reading through the list

LIN-SOLVABLE can be decided in cubic time, using Gaussian
elimination

SAT can be decided in exponential time, by trying all combinations
of variables

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 28 / 31

Decidable Languages

Not all decidable languages – i.e., solvable problems – are equal

Consider the following languages:

SORT = {sorted lists of integers}
LIN-SOLVABLE =
{linear systems of equations which have solutions}
SAT = {Boolean expressions that are satisfiable}

SORT can be decided in linear time, by reading through the list

LIN-SOLVABLE can be decided in cubic time, using Gaussian
elimination

SAT can be decided in exponential time, by trying all combinations
of variables

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 28 / 31

Polynomial Time

SORT and LIN-SOLVABLE can both be decided in a time which
is a polynomial function of the input size

This defines the complexity class P

Problems in P are generally tractable – polynomials grow slowly
enough that large input sizes are OK

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 29 / 31

Nondeterministic Polynomial Time

SAT (probably) can’t be solved in polynomial time

But a particular assignment of variables can be checked in linear
(polynomial) time

If we had a nondeterministic Turing machine, which could check all
possibilities at once, it could solve SAT in polynomial time

We say SAT ∈ NP, the class of nondeterministic polynomial time
problems

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 30 / 31

P vs. NP

Many problems are known to be in P, and many are known to be in
NP

It is known that P ⊆ NP – how would you prove this?

It is strongly believed but not known that P (NP

This is the famous P vs. NP problem

Ross Dempsey (Johns Hopkins University) Turing, WWII, and Theory of Computation JHU Splash, 2018 31 / 31

	Enigma in World War II
	Enigma Machine
	Polish Codebreaking Effort
	Bletchley Cryptanalysis
	Construction of Bombes
	Consequences

	Automata and Computing
	Automata and Languages
	Turing Machines

	Theory of Computation
	Undecidability
	Complexity Classes

	fd@rm@0:
	fd@rm@1:

