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What is a state?

Particle: position and velocity

Gas: pressure, volume, and temperature

Light: Direction, intensity, polarization
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Polarization

Light is a combination of electric and magnetic fields

The polarization direction is the direction of the electric field
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Measurement

A polarization filter “measures” the
polarization of light

Two perpendicular filters block all light

What about three filters?
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Measurement Principle

In quantum mechanics, measurements are active, not passive

Measuring the polarization changed the polarization

Is this true for other measurements?

Looking for something by shining a flashlight on it?
Checking speed using a radar gun?
Taking a temperature with a thermometer?
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Uncertainty Principle

If measuring a system changes its properties, are its properties
well-defined?

Heisenberg’s uncertainty principle: there is some irreduible uncertainty

∆x∆p ≥ ~
2
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Two Kinds of Uncertainty

Local hidden variables: uncertainty because of incomplete knowledge

We measure temperature, but individual particle motion is hidden

“True uncertainty”: the system itself is not in a determinate state

Particles do not have exact positions or velocities
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Quantum States

How can a system be in an indeterminate state?

Answer: quantum states are superpositions of determinate states

Wave-particle duality: since particles are “spread out” across different
position, they have some properties of waves
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Example: Polarization

A vertical polarization filter can measure two “definite” states, |V 〉
and |H〉
A quantum state of polarization looks like α |V 〉+ β |H〉
Measurement with a vertical filter: fraction α2 passes through

Measurement with a horizontal filter: fraction β2 passes through
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Diagonal Polarization

We observe that diagonally polarized
light has its intensity reduced by 1

2 for
each filter

This means α2 = β2 = 1
2

The diagonally polarized state is
1√
2
|V 〉+ 1√

2
|H〉

|V 〉

|H〉

Ross Dempsey (Johns Hopkins University) The Quantum World JHU Splash, 2017 11 / 25



Quantum Information

With more than one particle, quantum states are joint superpositions

Polarization example: α |V ,V 〉+ β |H,V 〉+ γ |V ,H〉+ δ |H,H〉
Born interpretation: think of α2, β2, γ2, δ2 as probabilities

Two systems may be correlated (e.g., α = δ = 0) – this is called
entanglement
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Quantum Computation

Instead of bits (|V 〉 and |H〉), use qubits (α |V 〉+ β |H〉)
Entangled qubits give larger computational power than independent
bits

Shor’s algorithm: fast factorization of large integers
Grover’s algorithm: search through N items in

√
N time
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Wavefunctions

With polarization, quantum states were
superpositions of 2 states

A position state is a superposition of
infinitely many states

We represent the state by ψ(x), a
function giving the “probability
amplitude” at x

x

ψ
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Waves at Boundaries

Waves (classical and quantum) satisfy
continuity conditions

At a boundary they cannot cross, waves
vanish exponentially, but not instantly

Examples:

Light striking metal
Magnetic fields and superconductors

x

ψ
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Tunneling

If the barrier is finite, the wave is not completely suppressed

Classical example: a very thin sheet of metal may be translucent

Quantum wavefunctions represent probabilities

There is a finite probability of a particle “tunneling” through a
classically insurmountable barrier

Example: α decay of heavy nuclei
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Tunneling Electron Microscope
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Pauli Exclusion Principle

Electrons in atoms can’t occupy the same quantum state

Periodic table reflects this principle

Ross Dempsey (Johns Hopkins University) The Quantum World JHU Splash, 2017 18 / 25



Fermions and Bosons

All fermions obey the Pauli principle

Bosons can occupy the same state

Photons are bosons, electrons are
fermions
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Spin Statistics Theorem

Particles are classified as fermions or bosons by spin

Half-spin particles are fermions, integer-spin particles are bosons

Fermions Bosons

Electron Photon
Proton Gluon

Neutron Pion
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Occupation Functions

Classical particles: Maxwell-Boltzmann
distribution

Fermions: Fermi-Dirac distribution

Bosons: Bose-Einstein distribution
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Bose-Einstein Condensate
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Superconductors

Electrons have spin 1/2, so pairs of electrons (called Cooper pairs)
can act as bosons

Cooper pairing occurs at low temperatures in some materials

When electrons act as bosons, current can flow like a laser
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Degenerate Matter

Stars are led to contract by gravity and
led to expand by hydrostatic pressure

After a star runs out of fuel to burn,
hydrostic pressure cannot balance
gravity

Stars contract until electrons have filled
all available states

Electron-degenerate matter forms a
white dwarf
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Chandrasekhar Limit

Electron degeneracy pressure can be
relieved if electrons enter nuclei

p + e → n + νe creates a neutron star

The white dwarf must reach a critical
mass for this to occur

This leads to a Type 1a supernova
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