The Quantum World A New Kind of Physics

Ross Dempsey

Department of Physics and Astronomy Johns Hopkins University

JHU Splash, 2017

4 0 8

4 0 8 \mathcal{A} \rightarrow э

- Particle: position and velocity
- Gas: pressure, volume, and temperature
- **•** Light: Direction, intensity, polarization

 \leftarrow

Polarization

- Light is a combination of electric and magnetic fields
- The polarization direction is the direction of the electric field

Light Passing Through Crossed Polarizers

- A polarization filter "measures" the polarization of light
- **•** Two perpendicular filters block all light
- What about three filters?

 \leftarrow

- In quantum mechanics, measurements are active, not passive
- Measuring the polarization changed the polarization
- Is this true for other measurements?
	- Looking for something by shining a flashlight on it?
	- Checking speed using a radar gun?
	- Taking a temperature with a thermometer?

- If measuring a system changes its properties, are its properties well-defined?
- Heisenberg's uncertainty principle: there is some irreduible uncertainty

$$
\Delta x \Delta p \geq \frac{\hbar}{2}
$$

- Local hidden variables: uncertainty because of incomplete knowledge
	- We measure temperature, but individual particle motion is hidden
- "True uncertainty": the system itself is not in a determinate state
	- Particles do not have exact positions or velocities

• How can a system be in an indeterminate state?

4 0 8

- How can a system be in an indeterminate state?
- Answer: quantum states are superpositions of determinate states

4 D F

- How can a system be in an indeterminate state?
- Answer: quantum states are superpositions of determinate states
- Wave-particle duality: since particles are "spread out" across different position, they have some properties of waves

- A vertical polarization filter can measure two "definite" states, $|V\rangle$ and $|H\rangle$
- A quantum state of polarization looks like $\alpha |V\rangle + \beta |H\rangle$
- Measurement with a vertical filter: fraction α^2 passes through
- Measurement with a horizontal filter: fraction β^2 passes through

• We observe that diagonally polarized light has its intensity reduced by $\frac{1}{2}$ for each filter

• This means
$$
\alpha^2 = \beta^2 = \frac{1}{2}
$$

• The diagonally polarized state is $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $|V\rangle + \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ \ket{H}

 \leftarrow

- With more than one particle, quantum states are joint superpositions
- Polarization example: $\alpha |V, V\rangle + \beta |H, V\rangle + \gamma |V, H\rangle + \delta |H, H\rangle$
- Born interpretation: think of $\alpha^2, \beta^2, \gamma^2, \delta^2$ as probabilities
- Two systems may be correlated (e.g., $\alpha = \delta = 0$) this is called entanglement

- Instead of bits $(|V\rangle$ and $|H\rangle$), use qubits $(\alpha |V\rangle + \beta |H\rangle)$
- Entangled qubits give larger computational power than independent bits
	- Shor's algorithm: fast factorization of large integers
	- onor s aigorithm: tast factorization of large integers
Grover's algorithm: search through N items in √N time

- • With polarization, quantum states were superpositions of 2 states
- A position state is a superposition of infinitely many states
- We represent the state by $\psi(x)$, a function giving the "probability amplitude" at x

- Waves (classical and quantum) satisfy continuity conditions
- At a boundary they cannot cross, waves vanish exponentially, but not instantly
- **•** Examples:
	- Light striking metal
	- Magnetic fields and superconductors

- If the barrier is finite, the wave is not completely suppressed
	- Classical example: a very thin sheet of metal may be translucent
- **•** Quantum wavefunctions represent probabilities
- There is a finite probability of a particle "tunneling" through a classically insurmountable barrier
	- Example: α decay of heavy nuclei

Tunneling Electron Microscope

画

← ロ ▶ → イ 同

 \rightarrow

Pauli Exclusion Principle

- Electrons in atoms can't occupy the same quantum state
- Periodic table reflects this principle

4 D F

 \rightarrow

- All fermions obey the Pauli principle
- Bosons can occupy the same state
- Photons are bosons, electrons are fermions

- Particles are classified as fermions or bosons by spin
- Half-spin particles are fermions, integer-spin particles are bosons

4 0 8

- Classical particles: Maxwell-Boltzmann distribution
- **Fermions: Fermi-Dirac distribution**
- **Bosons: Bose-Einstein distribution**

4 D F

Bose-Einstein Condensate

≃

活

∢ ロ ▶ イ 伊 ▶

- \bullet Electrons have spin $1/2$, so pairs of electrons (called Cooper pairs) can act as bosons
- Cooper pairing occurs at low temperatures in some materials
- When electrons act as bosons, current can flow like a laser

- Stars are led to contract by gravity and led to expand by hydrostatic pressure
- After a star runs out of fuel to burn, hydrostic pressure cannot balance gravity
- **Stars contract until electrons have filled** all available states
- Electron-degenerate matter forms a white dwarf

- • Electron degeneracy pressure can be relieved if electrons enter nuclei
- $p + e \rightarrow n + \nu_e$ creates a neutron star
- The white dwarf must reach a critical mass for this to occur
- This leads to a Type 1a supernova

