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Position

Position is defined using a reference point and a coordinate system

reference point

r = 4ı̂ + 3̂
̂

ı̂

4

3
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Velocity

Velocity is the rate of change of position

r(t = 0)

r(t = 2)

∆r = 4ı̂− 2̂

vavg = ∆r
∆t = 4ı̂−2̂

2 = 2ı̂− ̂
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Acceleration

Acceleration is the rate of change of velocity
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Centripetal and Centrifugal Acceleration

Velocity changes as an object moves around a circle
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Computing Centripetal Acceleration

An object moves with speed v around a circle of radius r

As it rotates, the velocity rotates through a circle of radius v

The change in velocity per cycle is 2πv

The time per cycle is 2πr
v

The centripetal acceleration is ∆v
∆t = v2

r
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Forces

Forces are physical influences on objects

Forces come from many different interactions

Gravitational forces between masses
Normal forces keeping objects apart
Friction between objects in contact
Electrical forces between a balloon and your hair
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Newton’s Laws

An object maintains its state of motion unless acted upon by an
external force

Acceleration is proportional to the net force on an object, and
inversely proportional to the mass of the object:

F = ma.

Objects exert equal and opposite forces on one another:

Fa→b = −Fb→a.
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Universal Gravitation

The force of gravity between two objects depends on their masses and
the distance:

Fg = −GMm

r2
.

The constant G is a fundamental physical constant

m M
Fg Fg
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Gravity on Earth

Compare Newton’s second law with the law of universal gravitation:

F =ma

Fg =m
GM

r2

The acceleration of gravity is g = GM
r2 ≈ 9.8 m/s2 on Earth
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Moon Calculations

Gravity

G = 6.67× 10−11

M = 5.97× 1024

r = 3.84× 108

Find gravitational
acceleration GM

r2

Answer: 2.7× 10−3

Centripetal Acceleration

v = 1.02× 103

r = 3.84× 108

Find centripetal
acceleration v2

r

Answer: 2.7× 10−3
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Freefall
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Pendulums

“the marvelous property of the pendulum, which is that it makes all
its vibrations, large or small, in equal times” – Galileo Galilei
This property is common, and called simple harmonic oscillation
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Energy

Two kinds of energy: kinetic and potential

Kinetic energy: energy of motion, depends on v

Potential energy: energy of position, depends on x
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Energy in Pendulums

Pendulums exchange energy between kinetic and potential
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Conservation of Energy

The total energy remains constant
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Experiment: Pendulum Period

The pendulum must swing at a particular rate to conserve energy

To find the period, let the pendulum swing 10 times back and forth
and divide by 10

20 cm 40 cm 60 cm

Mass 1

0.9 s 1.3 s 1.6 s

Mass 2

0.9 s 1.3 s 1.6 s
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Will I Scratch?

Conservation of momentum requires that billiard balls ricochet at a
90◦ angle

You can use this to determine whether the cue ball will reach a pocket
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Gravity Train

A mass falling through a hole in the Earth behaves like a pendulum

Ignoring extreme temperatures, air drag, etc., the mass would reach
the other end in 42 minutes
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Foucault Pendulum

Newton’s laws are modified when working in an accelerating frame
such as the Earth

There is an additional Coriolis force

The Coriolis force causes a pendulum to precess

Image credit: Balasubramanian & Dempsey, Mechanics: An Extended Introduction (2016)
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